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Abstract

Magnetorheological (MR) damper is one of the more promising new devices for vibration control of
structures. External energy required by the adjustable fluid damper is minuscule while speed of its response
is in the order of milliseconds. The MR damper is a semi-active control device and has been characterized
by a set of non-linear differential equations which represent a forward model of the MR damper, i.e., the
model can generate a force to a given displacement and applied voltage.

This paper presents an inverse model of the MR damper, i.e., the model can predict the required voltage
so that the MR damper can produce the desired force for the requirement of vibration control of structures.
The inverse model has been constructed by using a multi-layer perceptron optimal neural network and
system identification, which are Gauss–Newton-based Levenberg–Marquardt training algorithm, optimal
brain surgeon strategy and autoregressive with exogenous variables (ARX) model. Based on the data from
numerical simulation of the MR damper, the trained optimal neural networks can accurately predict
voltage. If the inverse model is used in a control system, the semi-active vibration control can be
implemented easily by using the semi-active MR damper.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The non-linear phenomenological model of magnetorheological (MR) damper has been
developed by Spencer et al. [1] The model is based on a Bouc–Wen hysteresis model and is
accurately and numerically tractable for the characteristic of the MR damper. By using this
mathematical model, the force of the MR damper is directly solved to a given displacement and
applied voltage. The model is called forward model. In an active control system, the control force
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needs to be known to meet a required vibration level. If the MR damper is used for semi-active
vibration control, it may be desirable to have an inverse model to predict preliminarily the applied
voltage in order to generate the required control force. However, solving the non-linear equations
describing the performance of the MR damper may be difficult or time consuming to predict a
required voltage, which will lead to complex and difficult controller design. Therefore, it is
valuable to establish an inverse model, instead of the complex mathematical model, of the MR
damper which can directly predict voltage.
Generally, it is difficult to develop a mathematical model for a complex non-linear dynamic

system such as the MR damper. Recently, the artificial neural network [2] has been effectively
applied to model complex systems because of its great learning (training process) and creation
(emulator) functions. It is possible to model the MR damper and identify the performance of the
complex dynamic system by using neural network. The technology of neural network includes
constructing network architectures and training them. Before construction of the network
architecture, two important problems must be considered: how many hidden layers should be
selected and how many neurons should be used in each layer? The questions are one of the most
difficult aspects of developing neural network models. Currently, to make a priori determination
of the appropriate size of the network is still difficult. Increasing the number of hidden layers will
make the neural network possess a better capability in learning more non-linear mappings.
However, too many hidden layers will deteriorate the performance of neural networks. Studies [2]
have shown that one or two hidden layers are sufficient for most problems. The number of
neurons in the hidden layers determine the capacity of neural networks and the complexity of the
underlying knowledge base in the data used for training neural networks. The network
architecture is not unique. The size of the neural network cannot be well determined for a good
performance. In order to construct an ideal network, this paper presents a practical strategy: (1)
using appropriately more neurons in the hidden layers so that, firstly, the neural network can
acquire adequate knowledge from the training data; (2) using a so-called optimal brain surgeon
(OBS) strategy [3] to remove the superfluous weights from the network so that an optimal
network architecture can be determined by pruning the network.
Network learning or training is the process of weighting adjustment based on the input/output

data. Training algorithms are generally based on the minimization of an energy or error function
that is the function of the vector of weights to be adjusted. Generally, these algorithms include the
gradient descent algorithm [4], the back propagation algorithm [5], the least-squares algorithm [6],
the recursive estimation method [7] and the Gauss–Newton-based Levenberg–Marquardt method
[8].
It is difficult to determine the input and output signals when using neural network to model a

non-linear dynamic system. This procedure is crucial for a successful identification of the complex
system. System identification theory [7] provides a mathematical framework for analysis and
design of dynamic systems of various types, regardless of their special physical nature and
functions. System identification is the procedure to develop a dynamic model of a structural
system to replicate the behavior of the system by measuring input/output relationships of the
system. Hence, using system identification may be useful for determination of input/output signals
for the neural network.
In this paper, the methodologies for construction of an inverse model of the MR damper are

presented using optimal neural network and system identification. The data for training and
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validating neural network were produced from the simulation of the mathematical model for the
MR damper proposed by Spencer et al. [1]. The system identification based ARX model and a
multi-layer perception network were selected to determine the model structure. To construct an
inverse model of the MR damper, the displacement, voltage and force were selected as the input
variables, while the voltage was selected as the output variable. The fully connected networks with
one hidden layer and 12 neurons in the hidden layer were selected to train by using the Gauss–
Newton-based Levenberg–Marquardt method. The OBS strategy was used to retrain the network
and prune the superfluous weights from the network to determine of an optimal network. The
optimal network was verified by using two different sets of data.

2. Simulated MR damper performance

Spencer et al. [1] proposed a new phenomenological model based on a Bouce–Wen hysteresis
model for a prototype MR damper developed by the Lord Corporation. The simple mechanical
model of the MR damper is shown in Fig. 1 and it is governed by the following seven equations:

f ¼ c1 ’y þ k1ðx � x0Þ; ð1Þ

’y ¼
1

c0 þ c1
½az þ c0 ’x þ k0ðx � yÞ�; ð2Þ

’z ¼ �g ’x � ’yj jz zj jn�1�bð ’x � ’yÞ zj jnþAð ’x � ’yÞ; ð3Þ

a ¼ aa þ abu; ð4Þ

c1 ¼ c1a þ c1bu; ð5Þ

c0 ¼ c0a þ c0bu; ð6Þ

’u ¼ �Zðu � vÞ: ð7Þ

A total of 14 model parameters were obtained using a constrained non-linear optimization
algorithm to characterize the damper. Optimized parameters were determined to fit the
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generalized model to the experimental data in a variety of tests. The resulting parameters are given
in Table 1. According to the model shown in Fig. 1, the force f of the prototype damper is
obtained if the patterns of displacement x and voltage v are prescribed. The model portrayed
effectively the behavior of the prototype MR damper and was numerically tractable. From the
model given in Eqs. (1)–(7), a set of data including given displacement x and voltage v; and force f
generated by the MR damper can be obtained. Fig. 2(a) shows the displacement, which is a 2.5Hz
sinusoid with amplitude of 1.5 cm. The applied voltage shown in Fig. 2(b) has the straight-line
type with expression of v ¼ 1:25þ t (Volt). Fig. 2(c) shows the force generated by the MR
damper. The force–displacement loops are shown in Fig. 3 and progress along a clockwise path
with increasing time, whereas the force–velocity loops are shown in Fig. 4 and progress along a
counterclockwise path with increasing time. These displacement, voltage and force representing
the performances of the MR damper were used to train the neural network.

3. Modelling techniques for MR damper performance

To construct the neural network for representing the performance of the MR damper, the
modelling techniques including a multi-layer perceptron (MLP) neural network, a Gauss–
Newton-based Levenberg–Marquardt training algorithm and an ARX model are presented as
follows.

3.1. MLP network

The MLP network is the most often used member in the neural network family due to its ability
to model simple as well as very complex functional relationships. A fully connected two layer
feedforward MLP-network with p inputs, m outputs, q hidden neurons and one bias in the input
and output layers, respectively, is shown in Fig. 5. For those MLP-networks having only one
hidden layer, only sigmodial activation functions f in the hidden layer and one linear activation
function F ; the output #yi can be expressed as the function of weights and inputs:

#yi ¼ Fi

Xq

i¼1

Wijfi

Xp

k¼1

wjkuk þ wj0

 !
þ Wi0

" #
: ð8Þ
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Table 1

Parameter values of MR damper model

Parameter Value Parameter Value

c0a 21.0N s/cm aa 140.0N/cm

c0b 3.50N s/cmV ab 695.0N s/cmV

k0 46.9N/cm g 363.0 cm�2

c1a 283.0N s/cm b 363.0 cm�2

c1b 2.95N s/cmV A 301.0

k1 5.0N/cm n 2

x0 14.3 cm Z 190 s�1
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The weights Wij and wjkði ¼ 1; 2;y;m; j ¼ 1; 2;y; qÞ specified by vector y are the adjustable
parameters of the network and they are determined from a set of data through the process called
training. The training data are a set of inputs fuðsÞg and the corresponding desired outputs fyðsÞg:
The hyperbolic tangent function is selected as the sigmodial action function f in the hidden layer.
Its curve is shown in Fig. 6 and it is expressed by

f ðxÞ ¼ 1�
2

1þ e2x
: ð9Þ

The training data set is specified with N points as

ZN ¼ f½uðsÞ; yðsÞ� s¼1;y;Ng
�� : ð10Þ
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Fig. 2. Signals for training neural network.
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Then the training objective is to determine a mapping from a set of training data ZN to a set of
possible weights #y:

ZN-#y; ð11Þ

so that the network can produce prediction #yðsÞ; close to the true outputs yðsÞ:
The prediction error approach is based on a measure of closeness of a mean square error

criterion augmented with a regularization term

VNðy;ZNÞ ¼
1

2N

XN

s¼1

yðsÞ � #yðsjyÞ½ �T yðsÞ � #yðsjyÞ½ � þ
1

2N
yTDy; ð12Þ

where D is the regularization matrix. For a simple weight decay, D is a diagonal matrix which is
selected to be D ¼ eI ; in which I is a unit matrix, and e is a small number which represents a
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weight decay. Criterion (12) is also called a regularized criterion. If D ¼ 0; then criterion (12) is
called an unregularized criterion. The weights vector is then found to be

#y ¼ argy min VNðy;ZNÞ ð13Þ

by an iterative minimization scheme

#yðiþ1Þ ¼ #yðiÞ þ mðiÞf ðiÞ; ð14Þ

where #yðiÞ denotes the ith iteration, f ðiÞ is a search direction based on information about VNðy;ZNÞ
acquired at previous iterations, and mðiÞ is the step size determined so that an appropriate decrease
in the value of VNðy;ZNÞ is obtained.

3.2. Levenberg–Marquardt training algorithm

The Gauss–Newton-based Levenberg–Marquardt method was used to minimize the mean-
square error, due to its rapid convergence properties and robustness. In terms of the method, the
following equation is used to determine the search direction f ðiÞ:

f ðiÞ ¼ �½V 00
Nð#y

ðiÞ;ZNÞ þ lðiÞI ��1V 0
Nð#y

ðiÞ;ZNÞ; ð15Þ

where l is a small positive scalar. V 0
Nð#y

ðiÞ;ZNÞ and V 00
Nð#y

ið Þ;ZNÞ are the matrices of the first and
second partial derivatives of VNð#yðiÞ;ZNÞ with respect to #y ið Þ: If l ¼ 0; then Eq. (15) will degenerate
to the Gauss–Newton method.
By adding a scalar l to the diagonal elements in the matrix of second partial derivatives or the

so-called Hessian matrix, the Gauss–Newton-based Levenberg–Marquardt method overcomes the
non-positive definite problems arising in the Hessian matrix. The scalar l is adjusted according to
the size of ratio rðiÞ between actual reduction in VNðy;ZNÞ on the ith step and the corresponding
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predicted reduction as:

rðiÞ ¼
VNðy

ðiÞ;ZNÞ � VNðy
ðiÞ þ mðiÞf ðiÞ;ZNÞ

VNðy
ðiÞ;ZNÞ � LNðy

ðiÞ þ mðiÞf ðiÞÞ
; ð16Þ

where LNðy
ðiÞ þ mðiÞf ðiÞÞ is the resulting quadratic approximation for ith iteration which can be

obtained from a truncated Taylor series expansion of VNðy
ðiÞ;ZNÞ about yðiÞ based on the

Newton’s method, and can be written:

LNðy
ðiÞ þ mðiÞf ðiÞÞ ¼ VNðy

ðiÞ;ZNÞ þ f ðiÞTV 0
Nðy

ðiÞ;ZNÞ þ 1
2
f ðiÞTV 00

Nðy
ðiÞ;ZNÞf ðiÞ: ð17Þ

The ratio rðiÞ measures the accuracy indicating how LNðy
ðiÞ þ mðiÞf ðiÞÞ approximates VNðy

ðiÞ þ
mðiÞf ðiÞ;ZNÞ: The closer rðiÞ is to unity, the better is the agreement. The ith iteration takes the
following steps:

(1) taking initial values of weight vector yð0Þ and an initial value lð0Þ (yð0Þmay be a set of small
(o1) non-zero random numbers and lð0Þ may be a small (e.g. 1) positive number);

(2) determining the search direction f ðiÞ from Eq. (15);
(3) calculating rðiÞ by Eq. (16), if rðiÞ > 0:75; then setting lðiÞ ¼ 1

2
lðiÞ (if predicted reduction is close

to actual reduction ðrðiÞ-1Þ; then let the search direction approach the Gauss–Newton search
direction and increase the step size mðiÞ);

(4) if rðiÞo0:25; then setting lðiÞ ¼ 2lðiÞ (if predicted reduction is far from the actual reduction
ðrðiÞ-0Þ; then let the search direction approach the gradient direction and decrease the step
size mðiÞ);

(5) if 0:25prðiÞp0:75; then setting lðiÞ ¼ lðiÞ;
(6) if rðiÞp0; then accepting yðiþ1Þ ¼ yðiÞ þ mðiÞf ðiÞ as a new iteration and letting lðiþ1Þ ¼ lðiÞ and

i ¼ i þ 1;
(7) if the stop criterion (ip maximum number of iterations or VNðy

ðiÞ;ZNÞoerror bound) is not
satisfied, then go to step (2).

The constants 0.25, 0.75, etc. are arbitrary because the algorithm is quite insensitive to their
change. In practice, a more sophisticated iteration [9] can be used. If rðiÞo0:25; then lðiÞ is chosen
in an interval ð0:1� 0:5Þ mðiÞf ðiÞ

�� �� on the basis of a polynomial interpolation. Other possible
changes may include a more sophisticated extrapolation strategy.

3.3. ARX model

After determining the global architecture of the neural network and the training algorithm, it is
necessary to choose a set of regressors (or an appropriate model structure) so as to determine a set
of control signals (or input signals) and output signal for the MR damper identification. ARX
model is the most basic model describing the relationship between the input and output with the
linear difference equation

yðsÞ ¼ jTðsÞy; ð18Þ

jðsÞ ¼ ½yðs � 1Þyyðs � naÞuðs � nkÞyuðs � nb � nk þ 1Þ�T; ð19Þ
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where jðsÞ is a regression vector containing the regressors; y is a vector containing the weights as
adjustable parameters; uðsÞ and yðsÞ are the input and output signals, respectively; na and nb are
the model orders which determine the structure of the regression vector; na represents the number
of past output signals and nb represents the number of past input signals; nk is the time delay
which is equal to one usually. ARX model means that the next output value of the model structure
is determined by the previous observations of output and input. The predictor for Eq. (19) gives

#yðs; yÞ ¼ gðjðsÞ; yÞ; ð20Þ

where g is the function realized by the neural network. Here, the predictor is a non-linear
predictor because it is not a scalar product between a known regression vector and the parameter
vector y:
After selecting an ARX model structure, an important procedure is to select the physical

variables as signals and the number of past signals as regressors. For the MR damper described
previously, there are three physical variables: displacement, voltage and force. In order to predict
a required voltage to a desired force, the applied voltage was selected as the desired output from
the network and the force generated by the MR damper was selected as the input signal into the
network. Such a model is called an inverse model because the desired network output is the plant
control input, and the network inputs are the plant measured outputs suitably delayed.
Furthermore, the predicted outputs may be related to the past desired outputs. To obtain one of
the best trained networks, the desired output of the MR damper was also used as input signal in
this investigation. Hence, the input signals into the network were the displacement x, voltage v

and force f, while the predicted output signal was the voltage #v: The neural network adjusts the
weights to reduce the error between the predicted output and the desired output.
Determination of the model orders na and nb is very difficult and complicated for a non-linear

system. He and Asada [10] presented a method for identifying orders of input–output models of
non-linear dynamic systems by calculating the index of the order. The index is interpreted such
that an insufficient lag space (na and nb) leads to a large index. Increasing the lag space, the index
will decrease until a sufficiently large lag space structure is reached. Further increasing the lag
space will not change the index significantly. In practical application, the curve of the index versus
the number of na and nb can be plotted to find out the knee-point, where the order index flattens
out. The knee-point corresponds to the number of na and nb: According to He and Asada’s
method, the number of na and nb for the data used to identify the MR damper is two. Therefore,
the model structure for identifying the MR damper was a second order model. Up to here, the
determined model structures were composed of six input signals (two past displacements, two past
voltages and two past forces) and one predicted signal (current force for the forward model or
current voltage for the inverse model). Fig. 5 shows the fully connected neural network with 12
neurons in the hidden layer.

3.4. Optimal network architecture

Because the model selection including regressor and network selection is subjective to some
extent, the constructed networks are not optimal. The so-called OBS strategy [3] gives a possibility
for automatic optimization of the network architecture. The OBS is an important strategy and is a
unique method that has been implemented for models of dynamic systems. According to the OBS
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strategy, the optimal network architecture can be determined by pruning the superfluous weights
from the network. The OBS strategy considers that if a network has the smallest training error,
then it is an optimal network. Implementation of the optimization process is to retrain each of the
intermediate network and calculate the training error each time when a weight has been
eliminated, then select the network with the smallest training error as the final network. Pruning
of a weight deletes the corresponding link. Pruning of all links that connect a neuron to the rest of
the topology deletes the neuron, which is within hidden neurons. Hence, pruning of weights
simplifies the complexity of initial network topologies and improves the comprehension of data
processing and topological parts in the network.
In order to implement the optimization process, the network is trained to a local minimum of

training error E and the neighborhood of the local minimum is quadratic. When a weight is
eliminated, the change in training error E is estimated through the following steps:

(1) expanding the criterion E to second order around an extremum y�;
(2) finding the changes of the remaining weights resulting from elimination of a weight, and

retraining the remaining weights in the quadratic approximation to the new minimum of E;
and

(3) computing the associated changes in training error.

For convenience of formularization, criterion (12) is rewritten by

VNðy;ZNÞ ¼ ENðy;ZNÞ1
2
yTDy; ð21Þ

where VNðy;ZNÞ represents the regularized criterion and ENðy;ZNÞ represents the unregularized
criterion. When the jth weight is eliminated, the change of training error E is expressed by

dEj ¼ gjy
T
� DH�1ðy�Þej þ 1

2
g2j eTj H�1ðy�ÞE00

Nðy�;Z
NÞH�1ðy�Þej: ð22Þ

The changes of all remaining weights are

dy ¼ �gjH
�1ðy�Þej: ð23Þ

In expressions (22) and (23), Hðy�Þ is the Hessian matrix of the regularized criterion

Hðy�Þ ¼ E00
Nðy�;Z

NÞ þ
1

N
D; ð24Þ

where E00
Nðy*

;ZNÞ is the matrix ðy ¼ y
*
Þ of second partial derivative of ENðy*

;ZNÞ with respect to
y; ej is the jth unit vector and gj is the Lagrange multiplier which can be determined by

gj ¼
yT� ej

eTj H�1ðy�Þej

: ð25Þ

3.5. Estimation and validation of neural network

Based on the developed methodologies, the neural network shown in Fig. 7 was trained by
using the data shown in Fig. 2. The fully connected neural network had 12 neurons in the
hidden layer. Using the pruning technology described previously, the optimal network was
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obtained. Fig. 8 shows the optimal network in which 83 weights were eliminated, about 85.5% of
the total weights.
The trained optimal network was used to predict signals. After the displacement and force

shown in Fig. 2 are input into the optimal model, the predicted voltage and its comparison with
the desired (or required) voltage to the MR damper are shown in Fig. 9. The graphical
comparison of the predicted and desired signals was very well. The optimal network was trained
successfully.
Another way to verify the optimal network is to study quantitatively the errors between

predicted and desired signals. The following expressions represent the errors:

Ev ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

s¼1
½vdðsÞ � vpðsÞ�2

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

s¼1
½vdðsÞ � mv�

2

r
; ð26Þ
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where vd is the desired voltage applied to the MR damper, vp is the corresponding voltage
predicted by the optimal network, and mv is the mean value of the desired voltage. The normalized
error was calculated as Ev ¼ 0:0044 which is very small.
Although the optimal network was trained very well, it still needs to be validated by using other

signals. According to the characteristic of the operating conditions for the MR damper, two sets
of signals were used to verify the optimal network. The first set of signal was composed of a
sinusoidal displacement with 1.0 cm amplitude and 5.0Hz frequency and a constant voltage with
1.0V level. The force generated by the MR damper was periodic with time increasing. Fig. 10
shows these signals. The second set of signal consisted of a random displacement and a random
step voltage. The force generated by the MR damper was also random. Fig. 11 shows the random
signals.
Applying the validating displacements and forces to the optimal model, the voltages predicted

by the network and their comparison with the desired voltages are shown in Figs. 12 and 13,
corresponding to the first and second set of signal, respectively. The curves of the predicted and
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Fig. 11. Second set of random signals for validating optimal network.
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Fig. 13. Comparison of the desired and predicted voltage signals using second set of validating data.

P.-Q. Xia / Journal of Sound and Vibration 266 (2003) 1009–1023 1021



desired voltages agreed very well. The normalized errors calculated by using formula (26) were
only Ev ¼ 0:0018 and 0.0020, corresponding to the first and second set of the validating signals,
respectively.
The direct inverse modelling is the simplest approach conceptually. The MR damper output

(force) was used as an input to the network. The network output was compared with the MR
damper input (voltage) and this error was used to train the network. This structure tended clearly
to force the network to represent an inverse model of the MR damper. However, it should be
noted that there is a drawback to the inverse modelling approach: the learning procedure is not
‘goal-oriented’ [11]. In other words, the training signal must be chosen to sample over a wide
range of system inputs, and the actual operational inputs may be hard to define a priori. The
actual goal in the control context is to make the system output behave in a desired way, and thus
the training signal in direct inverse modelling may not correspond to the explicit goal. To
overcome the problem, a specialized inverse learning approach [12], which is based on the error
between desired system outputs and actual outputs, can be used for inverse modelling.

4. Conclusions

(1) An inverse model of a MR damper was developed using optimal neural network and system
identification techniques. The trained optimal network can accurately predict the required
voltage for the desired force. The developed inverse model overcomes the limitation due to the
complexity in solving the non-linear mathematical equations describing the performance of
MR damper. If the optimal neural network is used in a control system, it is easy to implement
semi-active vibration control by using the MR damper.

(2) An artificial neural network together with the system identification theory is a very effective
and reliable methodology for identifying non-linear dynamic systems without knowing their
inherent physical nature and functions. In order to obtain the best identifier, the network
architecture including a set of regressor must be selected carefully.

(3) The OBS strategy is an effective technology to optimize neural network. The strategy can
overcome the difficulty in determining the number of neurons in the hidden layer during the
construction of a neural network. The OBS technology can simplify the complexity of initial
network topologies and improve the comprehension of data processing and the topological
parts in the network by pruning the superfluous weights from the network.

References

[1] B.F. Spencer Jr., S.J. Dyke, M.K. Sain, J.D. Carlson, Phenomenological model for magnetorheological dampers,

Journal of Engineering Mechanics, American Society of Civil Engineers 123 (3) (1997) 230–238.

[2] J. Ghaboussi, A. Joghataie, Active control of structures using neural networks, Journal of Engineering Mechanics

121 (4) (1995) 555–567.

[3] L.K. Hansen, M.W. Pedersen, Controlled growth of cascade correlation nets, in: M. Marinaro, P.G. Morasso

(Eds.), Proceedings of ICANN’94, Sorrento, Italy, 1994, pp. 797–800.

[4] R.A. Jacobs, Increased rates of convergence through learning rate adaptation, Neural Networks 1 (1988) 295–307.

ARTICLE IN PRESS

P.-Q. Xia / Journal of Sound and Vibration 266 (2003) 1009–10231022



[5] D.E. Rumelhart, J.L. McClelland, Parallel Distributed Processing: Explorations in Microstructure of Cognition,

1: Foundations, MIT Press, Cambridge, MA, 1986.

[6] T. Soderstrom, P. Stoica, System Identification, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[7] L. Ljung, System Identification—Theory for the user, Prentice-Hall, Englewood Cliffs, NJ, 1987.

[8] R. Fletcher, Practical Methods of Optimization, Wiley, New York, 1987.

[9] X. He, H. Asada, A new method for identifying orders of input–output models for nonlinear dynamic systems,

Proceedings of the American Control Conference, S.F., California, 1993.

[10] B. Hassibi, D.G. Stork, in: S.J. Hanson, et al. (Eds.), Second Order Derivatives for Network Pruning: Optimal

Brain Surgeon, NIPS 5, Vol. 164, Morgan Kaufmann, San Mateo, 1993.

[11] M.I. Jordan, D.E. Rumehart, Forward models: supervised learning with a distal teacher, Cognitive Science 16 (3)

(1992) 307–354.

[12] D. Psaltis, A. Sideris, A.A. Yamamura, A multiayered neural network cotroller, IEEE Control Systems Magazine

8 (1988) 17–21.

ARTICLE IN PRESS

P.-Q. Xia / Journal of Sound and Vibration 266 (2003) 1009–1023 1023


	An inverse model of MR damper using optimal neural network and system identification
	Introduction
	Simulated MR damper performance
	Modelling techniques for MR damper performance
	MLP network
	Levenberg-Marquardt training algorithm
	ARX model
	Optimal network architecture
	Estimation and validation of neural network

	Conclusions
	References


